Semi-magic Matrices for Dihedral Groups

نویسندگان

چکیده

After reviewing the group structure and representation theory for dihedral $$D_{2n},$$ we consider an intertwining operator $$\varPhi _\rho $$ from algebra $$\mathbb {C}[D_{2n}]$$ into a corresponding space of semi-magic matrices. From this operator, one obtains generating function enumerating associated squares with fixed line sum extending circulant While work complements approach to $$D_{2n}$$ through permutation polytopes, use only methods theory.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GBRDs with Block Size Three over 2-Groups, Semi-Dihedral Groups and Nilpotent Groups

There are well known necessary conditions for the existence of a generalized Bhaskar Rao design over a group G, with block size k = 3. We prove that they are sufficient for nilpotent groups G of even order, and in particular for 2-groups. In addition, we prove that they are sufficient for semi-dihedral groups.

متن کامل

Affine buildings for dihedral groups

We construct rank 2 thick nondiscrete affine buildings associated with an arbitrary finite dihedral group.

متن کامل

Soergel Diagrammatics for Dihedral Groups

Soergel Diagrammatics for Dihedral Groups

متن کامل

Springer Correspondences for Dihedral Groups

Recent work by a number of people has shown that complex reflection groups give rise to many representation-theoretic structures (e.g., generic degrees and families of characters), as though they were Weyl groups of algebraic groups. Conjecturally, these structures are actually describing the representation theory of as-yet undescribed objects called spetses, of which reductive algebraic groups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Springer proceedings in mathematics & statistics

سال: 2022

ISSN: ['2194-1009', '2194-1017']

DOI: https://doi.org/10.1007/978-3-031-10796-2_6